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1 Introduction

Our adventure began by discovering, thanks to the list of recommended papers given by Dr.
Panangaden, the paper by Daxler et al with the exciting title: Essentially No Energy Barriers in
Neural Network Energy Landscape, [1]. This paper, being of empirical nature, provided us with
insight on the numerical construction of continuous paths along the loss function connecting
two arbitrary minima, which was done using an algorithm from molecular statistical mechanics.
Their experiments showed that as the architecture gets wider and especially deeper, the loss at
the saddle points remains close to the loss of the original minima, yielding paths on which the
value of the loss function remains low. In the hope of adding theoretical results to our present
empirical knowledge of the loss landscape of neural networks, we referred to the paper by
Freeman and Bruna entitled Topology and Geometry of Half-Rectified Network Optimization,
[2]. This fruitful paper provided us with rigorous (as well as empirical) results relating the
connectedness of the landscape and the size of the hidden layers through the study of the
topology and geometry of the level sets of the loss function. Thanks to these two papers we
witnessed, mostly through empirical results, the important interplay between the connectedness
of the landscape and the model over-parametrization, which was referred as common knowledge
amongst deep learning practitioners. However, for us this relationship was a surprising one, and
we were in search of a theoretical explanation which would justify the intuition of deep learning
practitioners behind this vital interplay. This goal was fulfilled by analyzing the paper by Sagun
et al entitled Empirical Analysis of the Hessian of over-parametrized Neural Networks, [3], which
offers a theoretical intuition of the empirical results found in [1] and [2] of the connected structure
of the landscape through the study of the second order properties of the Hessian of the loss
function.

This paper is divided as follows: we present the main ideas of the papers [2] and [1] in
section 2 and 3 respectively. These two sections offer the motivation for section 4, in which
we analyze the theoretical intuition given by [3], and provide a possible explanation of the
connectedness of the landscape through over-parametrization.

2 Connectedness of level sets of the loss function

The paper [2] first characterizes poor local minima using topological connectedness. Poor local
minima are defined in this paper as local minima that are not global minima, at which gradient
descent can get stuck. [2] offers a theoretical analysis of the conditions on the data distribu-
tion and model architecture that ensure connectedness. Connectedness is indeed an essential
characteristic of network loss surfaces, since connected level sets imply that one can always find
a descent direction at each energy level. We will see in Proposition 2.1 that when all energy
levels are connected, there can be no poor minima i.e. all local minima are also global. This
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theoretical analysis is performed for linear networks and single layer non-linear ReLU networks.
The authors then experimentally study the connectedness of loss landscapes for a variety of
datasets and more complicated non-linear deep models.

The paper first deals with the linear case, in which it has previously been proven that deep
(linear) networks without regularization term have asymptotically connected level sets ([5]).
The paper [2] provides an alternative proof of this fact, which in fact generalizes the two-layer
case to also include linear networks with a ridge regression term in the loss function (which
consists of regularization based on the `2 norm).

Then, they move to the half-rectified ReLU case and prove that these networks are also
asymptotically connected, providing explicit bounds which link connectedness with network
over-parametrization (Section 2.2).

Before presenting the results of the paper, we must define the basic notation, which we will
also re-use in Section 4. Let x ∈ Rd, and denote the true label by y ∈ R. Define the sample
data by D = {(xi, yi)}Ni=1, generated randomly according to an unknown distribution D. Let
our model be parametrized by w ∈ RM , hence the number of parameters in the system is M .

Definition 2.1 (Network). A network is defined by a model function

f(·, w) : Rd −→ R

i.e. the output of the network for input x ∈ Rd, using parameters w ∈ RM . For example, for a
deep neural network, w contains the weights and biases used for all layers.

Definition 2.2 (Optimization problem). We can then define the empirical and oracle loss
functions which respectively have forms

Le(w) =
1

N

N∑
i=1

‖f(xi, w)− yi‖2 + κR(w) and Lo(w) = E(X,Y )∼D‖f(X,w)− Y ‖2 + κR(w)

where R(w) is the regularization term. The paper considers sparse and ridge regularization
which consist respectively of the `1 and `2 norms of w.

Definition 2.3 (Level set). We define the level set of the loss surface L(w) as

ΩL(λ) = {w ∈ RM | L(w) ≤ λ}

the set of parameters w yielding a loss smaller or equal to λ, for each energy level λ.1

Definition 2.4 (Strict local minima). w ∈ RM is a strict local minima of L(w) if there exists
ε > 0 such that ∀ w′ ∈ B(w, ε), w′ 6= w, we have L(w′) > L(w).

An important question in learning is whether there exist poor local minima. We have the
following proposition which links this question to the connectedness of level sets ΩL defined
above. We offer a proof, another is given in Appendix B of [2].

Proposition 2.1. If ΩL(λ) is connected for all λ, then every local minima of L(w) is a global
minima.

Proof. First consider the case where our local minima, w, is a strict one, satisfying Definition 2.4.
We now argue by contradiction: say ΩL(λ) is connected ∀λ, but there exists a strict local
minima of L(w) which is not a global one. Let w be this strict local min and let L(w) = λ0.

1This definition applies for both the oracle Lo(w) and empirical Le(w) loss functions.
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Consider ΩL(λ0), by definition of strict local minima, ΩL(λ0) must contain w and cannot contain
B(w, ε) \ w. Furthermore, since w is not a global min there must exist w̃ s.t L(w̃) < L(w) (in
fact there is a basin of attraction of a global min). Hence w̃ ∈ ΩL(λ0). By construction since one
of the values in ΩL(λ0); w, is isolated from the other values in ΩL(λ0), ΩL(λ0) is a disconnected
set. This contradicts the hypothesis. Therefore, we needed w to be a global min. A similar
proof can be done for non-strict minima (allowing for L(w′) ≥ L(w) in Definition 2.4).

2.1 Linear Network

We now wish to examine the connectedness of L(w) for specific network architectures. As shown
in Proposition 2.1, this will also tell us about the existence of poor local minima.

Definition 2.5 (Linear network). The multilayer (K − 1 layer) linear network considered in
this subsection is defined by the following model function, with parametrization split up into
Wi for some i ∈ [1,K], the weight matrices for each layer:

f(x,w) = WK . . .W1x , w = (W1, . . . ,WK).

For such a linear network, in the absence of a regularization term, i.e. κ = 0, [2] prove
that the level sets for both the empirical and oracle loss are connected at each loss level λ.
This implies by Proposition 2.1 that there are no poor local minima, as every local minima is
a global minima. The proof offered by [2] also allows for a ridge regularization term (κ > 0,
R(w) = ‖w‖2) in the single layer K = 2 case.

2.2 Half-Rectified Network

Now, most modern architectures use the ReLU and not linear activation, due to its acceleration
of the convergence of stochastic gradient descent and sparsity effects ([6], [7]). We would like
to examine this non-linear case, which turns out to be a lot more difficult – [2] were only able
to get a theoretical result about level set connectedness for the single layer case.

Definition 2.6 (Half-rectified network). The nonlinear ReLU network is defined by

f(x,w) = WKρ (WK−1ρ (. . . ρ(W1x))) , w = (W1, . . . ,WK)

where ρ(z) = max(0, z).2

Recall our specification of the network in Definition 2.1 where M is the total number of
parameters in the network, and N the size of the sample drawn: we consider the network
over-parametrized when M � N .

We now present the main theorem of [2] (Thm 2.4 pg. 6). To obtain connectedness results
for such a non-linear network, they considered connecting any two parameters wA and wB from
parameter space, both with loss Lo less than some λ ∈ R (i.e. wA and wB belonging to the
same level set), via a continuous path in the space of parametrizations. They denote this path
connecting wA to wB by γA,B : [0, 1]→ RM . They then allow for the loss along γ to have some
deviation above the level of the desired loss, λ. This deviation amount was shown to depend on
how over-parametrized the network is. Indeed, they show that γ can be set to have loss uniformly
bounded by max(λ, ε), where ε is a parameter that decreases with model over-parametrization,

and which has the following asymptotic behavior: ε = O(M
1
d ). Hence, they proved that as

2We can implement biases bi for each layer, as in yi(x) = Wix + bi, by simply replacing input vector x with

x = (x, 1) and replacing each Wi with W i =

(
Wi bi
0 1

)
. We will continue using x and Wi for simplicity.
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the number of parameters increases the level sets become asymptotically connected. Thus, the
main result in [2] is that a single layer half-rectified network is asymptotically connected through
over-parametrization.

2.3 Dynamic String Sampling Algorithm to find Paths

The main theorem in Section 2.2 was proven for only the single layer case, but [2] extend its
intuition to more general architectures. They conjecture that it should also be “easy” in deeper
nets to connect two parametrizations wA and wB which lie in the same level set, i.e. both with
loss less than some λ.

Their goal was to obtain a numerical estimation of this “ease-of-connection”. The authors
argue that a good measure is the normalized length of the geodesic γA,B(t):

g(wA, wB) =
|γA,B(t)|
|wA − wB|

This length represents approximately how much one must alter a linear path between a pair of
parametrizations wA, wB ∈ RM . Convex model functions satisfy g(wA, wB) = 1 ∀ wA, wB, since
the geodesic between any points will be a linear interpolation. However, non-convex models
will have geodesic length strictly greater than 1. This is justified in the proof of Thm 2.4 (their
main theorem) where they construct γ (see appendix B.4 in [2]).

The authors use a dynamic programming based algorithm called Dynamic String Sampling
to estimate this geodesic path (finding the exact path is hard, especially given complicated
models).

Given two different parametrizations wA and wB, each with loss Lo less than some given
λ, the algorithm’s goal is to search for a path γA,B(t) ⊂ ΩL(λ). We present a sketch of their
greedy algorithm, the Dynamic String Sampling Algorithm, in the Appendix (Section 5.2).

In [2] the Dynamic String Sampling algorithm is run on multiple regression and classifi-
cation tasks to connect pairs of parametrizations (gotten from randomly initializing pair of
parametrizations which were trained to the same loss value, as explained in the algorithm
description in the appendix). The tasks were fairly classic: quadratic and cubic regression
tasks using a fully connected multilayer network; MNIST digit recognition and CIFAR10 image
recognition tasks using a convolutional neural network; and a word prediction task on the PTB
dataset using a reccurent neural network (LSTM) architecture.

For all of these experiments, using their greedy algorithm, the authors were able to connect
pairs of parametrizations. Furthermore, they showed that as the loss value at the parametriza-
tions diminish the normalized length of the geodesic grew, hence also providing insight on the
geometric regularity of the level sets (see [2] pg. 9).

We will now turn our attention to a more recent paper [1], which also studies the connected
structure of the loss surface. The authors focus on connectedness between arbitrary local min-
ima, and extend the experimental work done by [2] by applying a different minima-connecting
method called the Automated Nudged Elastic Band (AutoNEB) algorithm.

3 The Automated Nudged Elastic Band: an algorithm for con-
necting minima

The paper [1] show the construction of continuous paths between arbitrary minima of the non-
convex loss functions of state of the art neural network architectures on the dataset CIFAR10
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and CIFAR100. This construction is done by the use of a model from molecular statistical
mechanics: The Automated Nudged Elastic Band (AutoNEB) algorithm.

Recalling Definition 2.2 of the loss function Le(w), which depends on network parametriza-
tion w (keeping architecture and training set fixed). The goal of AutoNEB is to find the
continuous path p∗ from parametrizations wA to wB through RM with the lowest maximum
loss:

p∗(wA, wB) = argmin
p from wA to wB

{max
w∈p

L(w)}

They refer to the parametrization w∗ with maximum loss on a path as the “saddle point” of
the path (as it is a saddle point of L(w)). Their goal is to get a good estimate of this loss to
obtain an upper bound on the loss along the entier path.

The AutoNEB algorithm is based on the Nudged Elastic Band (NEB) algorithm ([4]), which
essentially finds an approximation to the minimum loss path p∗ by bending a straight line
segment using gradient ‘forces’ until there are no more gradients perpendicular to the path.
Since this is an approximation of p∗, the point with maximum loss on the returned path may
not be the saddle point w∗ that we were searching for, but is an upper bounds of the loss at w∗.

We will first present the mechanical model behind the idea of the NEB, which is quite
interesting, and then move on to AutoNEB.

Consider connecting the two parametrizations w1, w2 ∈ RM with a chain of N + 2 pivots
pi ∈ RM , i = 0, . . . , N + 1 which are each connected via springs of stiffness k. We fix p0 = w1

and pN+1 = w2. We can consider the loss for each pivot L(pi) as a kind of potential energy,
and recall that the potential energy for a spring is V (x) = kx2/2.

We thus consider the total potential energy for the path

E(p) =

N∑
i=1

L(pi) +

N∑
i=0

1

2
k‖pi+1 − pi‖2

and the goal is to find the path that minimizes E(p) using gradient descent.

The main problem with this formulation is the choice of k, which can be broken down into
two cases:

– If k is chosen too small, the first term will dominate and, in areas with high loss, the
distances between pivots will become large, (we would actually want them to be small to
be able to identify the local maximum clearly) i.e. we have here that the pivots at high
loss get pushed away from the saddle point through the action of

∑N
i=1 L(pi).

– However, if k is chosen to be too large, the second term will dominate and it will be
advantageous to shorten each pi+1 − pi, whose norm contributes quadratically, i.e., the
spring term

∑N
i=0

1
2k‖pi+1 − pi‖2 will try to straighten the path as much as possible.

To counter these problems, the NEB algorithm considers the force due to E(p) instead of
directly minimizing E(p). This force can be split up into a component coming from the loss,
FL and one from the springs, FS :

Fi = −∇piE(p) = FL
i + FS

i

We then modify (nudge) these forces for the NEB, such that the loss force only acts perpen-
dicularly to the path (can no longer redistribute pivots to slide down from the saddle point),
and the spring force only acts parallel to the path (can only redistribute pivots, and no longer
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straighten the path). Let τ̂i be the local tangent to the path. The NEB force is thus:

FNEB
i = FL

i |⊥ + FS
i |‖ , where FL

i |⊥ and FS
i |‖ are defined as follows:

FL
i |⊥ = − (∇L(pi)− (∇L(pi) · τ̂i)τ̂i)
FS
i |‖ =

(
FS
i · τ̂i

)
τ̂i where FS

i = −k (‖pi − pi−1‖ − ‖pi+1 − pi‖)

(spring force opposes unequal distances along the path).

Given this model, the NEB algorithm is very simple. We initialize the path p(0) with N + 2

pivots which satisfy p
(0)
0 = w1, p

(0)
N+1 = w2 as previously described. We then compute for

t = 1, . . . , T , where T is a predetermined (large enough) number of iterations, the projected
force Fi = FL

i |⊥ for each pivot i = 1, . . . , N (excluding the fixed ones at i = 0 and i = N + 1

of course), and update all the pivots at the next time step according to p
(t)
i = p

(t−1)
i + γFi. At

the beginning of each iteration, we also use FS
i |‖ to redistribute all pivots. After T iterations,

we output the final path p(T ).

Note that the computation of the forces for all the pivots can be easily parallelised.

The AutoNEB (Automated Nudged Elastic Band Algorithm) is essentially a wrapper for
the NEB algorithm: it runs NEB for a small number of iterations T and small number of pivots
N . It then checks if the pivots accurately sample the path. If not, new pivots are added at
locations where it is estimated that the path requires more accuracy. This is run several times,
t′ = 1, . . . , T ′.

While the AutoNEB algorithm is not guaranteed to find the absolute minimum loss path,
it is an approximation so it may get stuck in local minimum loss paths. However, it is easy to
remove a bad path between wi and wj by computing paths between other pairs of minima. As
soon as a lower path between wi and wj is found by concatenating paths, the bad one can be
removed.

Using this algorithm, [1] showed for various CNNs, ResNets and DenseNets on the image
classification tasks CIFAR10 and CIFAR100 that the constructed minimum loss path between
the minima had constant low loss. This was done by computing the loss at the maximum on the
connection paths generated by AutoNEB. Knowing that this maximum is an upper bound to
the true path saddle point, they found that the empirical upper bounds were astonishingly close
to the loss at the minima themselves. Based on their experiments [1] conjectured the following:

– Neural network loss minima form a connected manifold in parameter space. That is, the
part of parameter space with loss beneath some low value forms a connected component.

– As the architecture gets wider and especially deeper, the loss at the saddle points remains
close to the loss of the original minima, yielding paths on which the value of the loss
function remains low.

Wishing to provide an intuitive explanation of their observations, [1] briefly introduces
the notion of resilience: locally, one can slightly perturb a parameter without it leading to
significant increase in the loss value. If one can show that locally the majority of directions in
the parameter space are flat then this would explain the ability to construct flat paths between
arbitrary minima.

This lead to the following grand questions needing to be answered: Do current-day deep ar-
chitectures have this resilience property? And, what is the relationship between over-parametrization
and resilience (i.e. the flatness of the landscape)?
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Through the numerous papers providing practical results with qualitative justifications,
([13], [14], [15], [16], [17]) we found one paper which answered our questions while providing
some theoretical background to support it ([3]). This paper provides a phenomenological study
on the local geometry at a minima by studying the eigenvalues and eigenvectors of the Hessian of
the loss function. Moreover, they discuss how flatness of the landscape can be measured by the
singularity of the Hessian (ie. the number of trivial eigenvalues). And finally, how the level of the
singularity of the Hessian is dependent on the relationship between the number of parameters
and the number of samples. They hence provide a possible explanation of the connectedness of
the landscape through over-parametrization. Throughout the rest of this paper we will analyze
the theoretical approach in [3], and provide additional details on the steps undertaken to arrive
to their conclusion.

4 The interplay between the connected structure of the param-
eter space and the model over-parametrization

We first recall some definitions from Section 2 and establish some new notation:

We denote the loss function by l(f(w, x), y) where f(w, x) is the predictor (model function),
and we take l to be a convex function. Hence, the empirical loss is as in Definition 2.2, given
by:

L(w) :=
1

N

N∑
i=1

l(f(w, xi), yi).

Our goal is to study the spectrum of the Hessian since near its critical points; by Taylor’s
theorem, the second order approximation provides the best approximation of the function. We
recall that a local minimum occurs when all eigenvalues are positive, and if there are negative
and positive eigenvalues then we are at a saddle point.

At a critical point, that is when ‖∇L(w)‖ = 0, the eigenvectors indicate the directions in
which the value of the function locally changes. Further, the magnitude of the corresponding
eigenvalues indicates the size of fluctuations in the associated direction. We will next present a
useful decomposition of the Hessian.

4.1 The Gauss-Newton decomposition of the Hessian

We will decompose the Hessian as the sum of two matrices: the sample covariance matrix of
the gradients of model outputs and the Hessian of the model (i.e. the function that describes
the model’s outputs) (see [9]).

For ease of notation, for each sample data point i ∈ {1, . . . , N}, define the loss function as
the composition li ◦ fi : RM → R+ where li : R→ R+ is convex, and where the model function
is fi : RM → R.

Calculating the gradiant and the Hessian of the loss function for a given i ∈ {1, . . . , N}
yields:

∇li(fi(w)) = l′i(fi(w))∇fi(w) (1)

∇2li(fi(w)) = l′′i (fi(w))∇fi(w)∇fi(w)T + l′i(f(w))∇2fi(w) (2)

In order to write (2) in the desired form we must first show that a convex function l, has
a non-negative second derivative. We note that [3] does not impose any regularity conditions
on this convex function. Without assuming regularity this result is subtle and we will provide
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a proof that an arbitrary measurable convex function on R has the property that l′′(s) ≥ 0 a.e.
on R. (See the Appendix Section 5.1)

Using equation (2) and the fact that we can take the square root of l′′i ≥ 0, we can write the
Hessian of the loss function in the desired decomposition:

∇2L(w) =
1

N

N∑
i=1

[√
l′′i (fi(w))∇fi(w)

] [√
l′′i (fi(w))∇fi(w)

]T
+

1

N

N∑
i=1

l′i(f(w))∇2fi(w) (3)

We have the information that at a point w̄ near a critical point, the average over the N
samples of the gradient is close to zero by equation (1). Therefore, as stated in [3], by making
the hypothesis that l′i(f(w̄)) and ∇2fi(w̄) are not correlated we have that the second term in
(3) is approximately equal to zero. We can then approximate the Hessian by the M×M sample
covariance matrix:

∇2L(w̄) ≈ 1

N

N∑
i=1

[√
l′′i (fi(w̄))∇fi(w̄)

] [√
l′′i (fi(w̄))∇fi(w̄)

]T
(4)

Note that in the case where the model function is linear in w we have that ∇2fi(w) = 0 ∀i ∈
{1, . . . , N}, in which case we do have an equality in equation (4). An example of this will be
given at the end.

Our goal is now to prove that when there are more parameters than samples the covariance
matrix in (4) leads to degeneracy. We explain the use of this result below.

The first step is to prove that the covariance matrix is a weighted sum of N rank one
matrices.

Definition 4.1. A rank one matrix A has the property that Rank(A) = 1, i.e. the range of A
is one-dimensional.

Lemma 4.1. An m×n matrix A is a rank-one matrix if and only if A = vwT for some v ∈ Rm

and w ∈ Rn.

Proof. Suppose that A = vwT and let u ∈ Rn, then Au = vwTu = (u ·w)v. This means that A
maps every vector u ∈ Rn to a scalar multiple of v, hence its range is one-dimensional, i.e. A is
of rank one.

On the other hand, if the range of A is one-dimensional, this means that A maps every vector
u ∈ Rn to a multiple of a vector, say v ∈ Rm. In particular, A~e1 = ν1v, A~e2 = ν2v, . . . , A~en =
νnv where ~ei is the unit vector with value 1 at the ith component and 0 elsewhere and νi is
some constant in R. Hence the i− th column of the matrix A can be written as νiv, i = 1, . . . , n,
which means that A can be written as

A = vwT , with wT = (ν1, . . . , νn)

We apply this lemma to the right hand side of (4) with v =
[√

l′′i (fi(w̄))∇fi(w̄)
]

and
wT = vT . Hence, we have proven that each matrix in the sum in (4) is a M ×M rank one
matrix. It then follows that each of these rank one matrices have M − 1 trivial eigenvalues.
Indeed, this is the case since their null space is of dimension M − 1, hence the geometric
multiplicity of the eigenvalue λ = 0 is M − 1.

We are now ready to prove the crucial claim given in [3] which asserts that there are at least
M −N zero eigenvalues of the right hand side of (4).
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Theorem 4.2. Let Ai, i = 1, . . . , N be N rank-one M ×M matrices. Then the matrix
∑N

i=1Ai

has at least M −N zero eigenvalues.

Proof. We will prove this result by induction. We do the case N = 2 first. We will be using the
formula for the sum of subspaces (see [11] thm 4.8, or a GRE math textbook):

dim(A ∩B) + dim(A+B) = dim(A) + dim(B),

with A = kerA1 and B = kerA2. Since Ai are rank-one matrices, their null-space has dimension
M − 1 (by the rank-nullity theorem), and since dim(A + B) ≤ M (as each null space has
dimension at most M ,) we conclude

dim(A ∩B) ≥ 2(M − 1)−M = M − 2.

Now assume by induction that

dim

(
N−1⋂
i=1

kerAi

)
≥M − (N − 1).

Using again that dim
(∑N

i=1 kerAi

)
≤M , we have:

dim

((
N−1⋂
i=1

kerAi

)
∩ kerAN

)
≥ dim

(
N−1⋂
i=1

kerAi

)
+ dim(kerAN )−M

≥M − (N − 1) +M − 1−M = M −N.

Using this theorem with the rank-one matrices:

Ai =
1

N

([√
l′′i (fi(w))∇fi(w)

] [√
l′′i (fi(w))∇fi(w)

]T)
,

we conclude that the right-hand side of equation (4) has at least M −N trivial eigenvalues.

We now see that as M exceeds N , the RHS of (4) becomes ‘more singular’. If we can
obtain an equality in (4), this would imply that through over-parametrization the level of the
singularity of the Hessian increases. Indeed, the eigenvalues of the Hessian determine the size
of local changes in the loss function, hence this cluster of trivial eigenvalues would explain the
flatness of the landscape near a critical point. Hence, providing an explanation of the results
on the connected structure of the landscape found in [1] and [2], since the landscape would be
flat at all critical points. Moreover, it could explain the empirical results found by [1] of saddle
points of low loss found on the paths connecting arbitrary minima.

Next, we provide an example for which we have equality in (4). (See Appendix B in [3])
We let M = d and take the following linear model function: f(w, x) = w · x. Let the loss
function be given by l(s, y) = −y log 1

1+e−s − (1 − y) log(1 − 1
1+e−s ). This is a convex function

in s since ls is increasing. Finally, we take a single neuron and choose the sigmoid function
as our activation function. Then by equation (3), the Hessian of the loss function is equal to
the covariance matrix of the gradients of model outputs. We note that in this case we have a
good understanding of the spectrum of the covariance matrix: its eigenvalues are distributed
according to Marchenko-Pastur law. (See [3] Appendix B).

We lastly mention that most of the paper [3] focuses on experimental results of the spectrum
of the Hessian, and use the generalized Gauss-Newton decomposition of the Hessian to suggest
that in practical applications one can expect to have a cluster of trivial eigenvalues.
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5 Appendix

5.1 Rigorous results on convex functions

We will prove that a measurable convex function on R has a non-negative second derivative
except possibly on a set of measure zero. This fact will be obtain in several steps. The first step
is to prove that an increasing function on R is continuous except possibly on a countable set.

Lemma 5.1. Let h be an increasing function on R, then h is continuous except possibly on a
countable set.

Proof. One can characterize the set of discontinuities of h by D = {x ∈ R | h(x−) < h(x+)}
(where h(x−) = limy→x,y<x h(y)) since an increasing function can only have jump discontinu-
ities. By the density of Q in R, ∀x ∈ D,∃qx ∈ Q such that qx ∈ (h(x−), h(x+)). Since h is
increasing, taking x1, x2 ∈ D with x1 < x2, we have h(x−1 ) < h(x+1 ) ≤ h(x−2 ) < h(x+2 ). Hence
by construction, {qx}x∈D is a disjoint collection in Q. It follows that we have found an injective
map from D to Q, and hence that D ⊆ Q, namely that the set of discontinuities of h is at most
countable.

Next we prove that if a measurable function l is convex then l is differentiable except on a
countable set and that on the complement of that set, l′ is increasing.

Proposition 5.2. Let l be a measurable function that is convex on R, then l is differentiable
except on a countable set C1 and l′ is an increasing function on R \ C1.

Proof. First we note that since l is convex (See [10] pg. 130), we have:

l(x1)− l(x)

x1 − x
≤ l(x2)− l(x1)

x2 − x1
≤ l(x2)− l(x)

x2 − x
, for x1 < x < x2. (5)

It follows in particular, and using also the monotone convergence theorem for sequences, that
the one-sided derivatives of l(s) exist, i.e. l′(s+), l′(s−) exists ∀s ∈ R. Using again equation (5)
where x1 < x yields the following useful inequalities:

l′(x−1 ) ≤ l′(x+1 ) ≤ l(x)− l(x1)
x− x1

≤ l′(x−) ≤ l′(x+). (6)

In particular l′(x+) and l′(x−) as functions of x are increasing functions. From the above Lemma,
this means that they are continuous except on a countable set that we will call C1. Now let
x1 ∈ R\C1, using (6) and the continuity of l′(x−) at x1, we obtain that limx→x1 l

′(x−) = l′(x−1 ).
Therefore by (6), we have

l′(x−1 ) ≤ l′(x+1 ) ≤ l′(x−1 ),

so that l′ is differentiable at x1 and since x1 was arbitrary, we conclude that l′ is differentiable
in R \ C1. Finally, it follows from (6) that l′ is increasing on R \ C1.

Finally, using Lebesgue’s Theorem on increasing functions (see pg. 112 in [10]), we conclude
that l′(s) being an increasing function on R \ C1 is in fact differentiable except on a set of
measure zero. Hence the second derivative of l exists almost everywhere on R (since the finite
unions of sets of measure zero is zero). By the definition of the derivative it then follows that
since l′ is increasing a.e. on R that l′′(s) ≥ 0 a.e. on R.
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5.2 Sketch of the Dynamic String Sampling Algorithm

Starting by initializing parameters w1 6= w2 randomly, we separately train the networks f(xi, w1)
and f(xi, w2) using stochastic gradient descent to λ. The algorithm then recursively builds a
string of parametrizations {wk} which continuously connect each w1 to w2 in the following
manner:

Let γ̃a,b(t) = t · a+ (1− t) · b, t ∈ (0, 1) be the linear interpolation between a and b.

– Pick a w3 on the linear interpolation between w1 and w2, i.e. a t∗ ∈ (0, 1) either by
taking t∗ = 0.5 (midpoint) or a local maximum of the interpolated loss curve: t∗ such that
d
dtL(γ̃w1,w2(t∗)) = 0 (the authors used this option).3

– The new parametrization w3 = γ̃w1,w2(t∗) is added to the string, and stochastic gradient
descent is performed on f(xi, w3) until its loss is below λ.

– For each pair [w1, w3] and [w2, w3], compute the maximum value of the interpolated loss
curve maxt[L(γ̃wi,w3(t))], i = 1, 2. If this value is greater than λ, the string building
recursively runs for that pair, adding to the global string of parametrizations.

In the end, the algorithm outputs a string {wk} that continuously connects w1 to w2 such that
the linearly interpolated loss maxt[L(twi+(1−t)wj)] for each pair of neighbouring parametriza-
tions w{i,j} is below λ.

Figure 1: Cartoon of the Dynamic String
Sampling algorithm. Starting at a) with
the two parametrizations θ{i,j} (both with
L(θi,j) < λ) to be connected, at b), the
interpolated loss function (red curve) is
computed and we find the local maximum
at t∗. c), The local max θij = θ3 is added
to the string of parametrizations and then,
d), trained using stochastic gradient de-
scent to have loss value less than λ. e),
new interpolated loss curves are computed
between the parametrizations, and steps
f) and g) show the recursion of the algo-
rithm: the steps the same as c) and d) but
on the interval [θi, θij ].

It is important to note that this algorithm can only confirm whether wA and wB are con-
nected, but cannot guarantee that they are disconnected if the algorithm fails to converge. So
for cases that are not easily convergent, one has to rely on heuristic arguments to choose when
exactly to stop the algorithm. In practice, for the problems the authors chose to examine,
convergence was not a problem.
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