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1. Introduction

Entropy has tens of interpretations throughout many fields such as information theory, probability and
thermodynamics. It was introduced in the context of thermodynamics by Carnot and Clausius in ther-
modynamics, and given a statistical interpretation by Boltzmann and Maxwell. An information-theoretic
operational understanding was then given by Claude Shannon in his famous 1948 treatise. Essentially, en-
tropy was offered as the number of bits needed to encode a message when sending it through a noiseless
channel. Of course however, information is transmitted through physical bits and a link between informa-
tion theory and thermodynamics is needed. This is Landauer’s principle, which states that the erasure of
information inevitably requires work, i.e., results in the generation of heat.

In this paper, we examine these operational and physical interpretations of entropy in both the classical
and the quantum settings. Some critical differences between classical and quantum entropy induce profound
and very curious consequences both operationally and thermodynamically – namely, the possible negativity
of conditional entropy in the quantum world.

We begin by introducing the classical view of information theory as formulated by Shannon in section 2.1.
We define the classical Shannon entropy and interpret it operationally via Shannon’s noiseless coding the-
orem. Landauer’s principle in a classical system is then introduced in section 2.3 and we show how it is
wielded to defeat the famous Maxwell’s demon paradox.

Moving on to the quantum world, we first give a brief review of important notions of quantum mechanics,
then introduce the von Neumann entropy and its operational meaning via the quantum noiseless encoding
theorem in section 3.2 – a perfect quantum analog of the classical setting from section 2.2. Then, in section 3.3
we present the operational interpretation of conditional entropy by Horodecki et al. as the amount of qubits
that an agent A needs to send to B for B to have the full description of the joint state. Here, we notice a
quantum effect, the potential negativity of conditional entropy, and operational meaning is given to it.

Finally, in section 4, we investigate negative conditional entropy further through its thermodynamic
interpretation. We examine an observer-dependent Landauer’s principle, where the observer has a quantum
memory potentially entangled with the system, by exploring the work by del Rio et al.. In this setting, they
find that the negative entropy caused by the entanglement of the memory with the system allows work to
be extracted from an erasure process!

2. Classical Information Encoded in Systems

2.1. Basics of Classical Information Theory

The information content of a system is, informally, the amount of information one party must transmit to
another party – who only has some shared background knowledge such as the language used – for the second
party to be able to reconstruct the state of the system. In classical information theory, this information is
encoded in sequences of a base unit called the bit, which takes on two possible values, 1 or 0. Usually, the
system does not only consist of binary parts; however, the first party can transmit the set of instructions on
how to recreate the system, which may be very complicated, as a sequence of k binary choices. We then say
that k bits of information are encoded in the system.
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We thus seek to estimate this amount of information k. Suppose we have a complicated classical system
made of a large number N of components, each of which can be in one of n states with probability pi,
i = 1, . . . , n. This is equivalent to a long string of characters, where each character is drawn from a language
with n letters occuring with known probabilities. In his seminal 1948 work, Shannon develops a mathematical
theory of communication and precisely answers our question of how to quantify the amount of information
output by a discrete information source. Let X be a random variable with probability mass function pi
representing one character in our string.

The information content of each character can be interpreted as the level of surprise of receiving the
outcome i. For a random variable X with distribution pi, it is also known as surprisal or self-information [8],
and defined to be the function

IX(i) = log2

1

pi
. ()

Why this definition? We would like the surprisal of the intersection of two independent events X and Y
to be equal to the sum of the individual surprises. The information content is a function of probabilities, and
since the probability of the intersection of independent events is multiplicative P{X ∩ Y } = P{X}P{Y },
we want this function to turn multiplication in its input to sums in its output: f(xy) = f(x) + f(y). The
class of functions satisfying this is exactly the logarithm (any base)!

The Shannon entropy of X is then defined as

H(X) :=

n∑
i=1

pi log2

1

pi

= E{IX(i)},
()

the expected amount of information transmitted per character in a long string of characters.
Shannon proved that this definition of the entropy (), modulo a constant multiple, is the only one that

satisfies three properties we want. It is continuous in the pi; is monotonically increasing in n in the case
where all pi ≡ 1/n; and satisfies additivity (if a choice is broken down into two choices, the original entropy
should be the weighted sum of the individual values of entropy for each choice).

Indeed, the form of Shannon’s entropy differs from the entropy formula derived by Boltzmann in the
context of statistical physics only by a constant multiple [5]. Boltzmann’s formula was found from the
number of ways an observable macrostate of a thermodynamic system could be obtained from microstates.
It is written

S = −k ln 2

n∑
i=1

pi log2 pi, ()

where k is Boltzmann’s constant and pi for i = 1, . . . , n are the probabilities of each of the n possible
microstates of the system. We will discuss the extension of Boltzmann’s entropy definition to quantum
systems in Section 3.2.

Before moving on to give an operational understanding of entropy in the next section, we will first briefly
recall a few important entropic notions that arise when we consider more than one system.

We’ve defined the entropy of a single random variable in (). Now we may ask the question of what
happens if we have two interdependent systems. Let’s consider two random variables X and Y defined
respectively on alphabets X and Y with joint distribution p(x, y). Then the joint entropy of X and Y is
simply an application of () to the vector-valued random variable (X,Y ),

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x, y)

= −E{log2 p(X,Y )}.
()
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Similarly, the conditional entropy of the random variable Y given X can be naturally defined as

H(Y |X) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(y|x)

= −E{log2 p(Y |X)},
()

and it quantifies the extra amount of information needed to describe the system Y given that the outcome
of X is known. Indeed, noting that H(X,Y ) bits are required to describe the joint state of the two systems,
this understanding of the conditional entropy as extra information is confirmed by the chain rule

H(X,Y ) = H(X) +H(Y |X), ()

which can be shown from first principles. Thus, if the value of Y is completely determined once X is known,
the conditional entropy H(Y |X) = 0. On the other hand, if X and Y are independent, then knowing X
provides no information, and H(Y |X) = H(Y ). Another seemingly trivial property is the positivity of
entropies, including conditional entropy:

H(Y |X) ≥ 0. ()

Interestingly, conditional entropy is not necessarily non-negative in the quantum world! This reveals a
fundamental difference between quantum and classical systems, and leads to many of the consequences we
will discuss later in this paper.

2.2. Sending Information Through a Classical Channel

Now, we can also obtain an operational interpretation of the Shannon entropy, by linking it to fundamental
limits on information transfer.

In the setting of a noiseless channel, Shannon showed that there exists an optimal encoding such that a
long string of N random variables i.i.d. distributed as X can be compressed into NH(X) bits, where H(X)
is the cutoff number of bits necessary to encode each random variable [21]. Any more and there is little risk
of information loss, but any less and it is almost certain that information will be lost.

Let the fidelity F of an encoding denote the probability that the decoded message is the same as the
message sent, i.e., the probability that there is no error in the encoding. The following statement of the
theorem and proof are due to Schumacher [19].

Theorem 1 (Noiseless Coding Theorem). Consider a message source outputting i.i.d. random variables
distributed as X, and let ε, δ > 0.

i) If H(X) + δ bits are available per random variable X, then for sufficiently large N , a sequence of N
random variables i.i.d. distributed as X can be encoded with fidelity greater than 1− ε.

ii) If H(X)− δ bits are available per random variable X, then for sufficiently large N , if a sequence of N
random variables is encoded into a binary string, the fidelity will be less than ε.

Proof. The proof uses the weak law of large numbers to relate the Shannon entropy to the number of
“likely” sequences of N identical random variables. The weak law states that a long string of i.i.d. random
variables has average very close to the mean of each variable with probability approaching 1. Consider a
message α = x1x2 · · ·xN of length N where each xi ∼ X and define the probability of this message to be
P{α} = p(X = x1) · · · p(X = xN ). The surprisal random variable yi = − log p(X = xi) as seen in () has
expected value E{yi} equal to the entropy H(X). Also, its average over the long string can be written

1

N

N∑
i=1

yi = − 1

N
logP{α}.

The weak law of large numbers then tells us that most long messages have an average surprisal lying very
close to the entropy. A set A of “likely” sequences can thus be defined for arbitrarily small δ and ε,

A :=

{
α :

∣∣∣∣− 1

N
logP{α} −H(X)

∣∣∣∣ ≤ δ} , ()
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such that the probability that a message lies in this set is greater than 1 − ε for messages of a sufficiently
large length N . From this condition on the set A, the probability P{α} of each likely message α ∈ A can be
bounded above and below. From there, so can the number ν of likely messages:

(1− ε)2N(H(X)−δ) ≤ ν ≤ 2N(H(X)+δ).

The bound (i) now directly follows, as we can code each of the likely messages into unique sequences of
the N(H(X) + δ) available bits; other messages occur with probability less than ε and can all be mistakenly
coded as one arbitrary fixed sequence.

The proof of (ii) to show the probability of error will be greater than 1− ε requires a bit more work. We
are given ε > 0 and δ > 0, and begin by picking a larger N than originally in () to have a larger set of
likely sequences. We choose it such that () holds with ε replaced by a smaller ε′ = ε

2 > 0 and δ replaced

by a smaller δ′ = δ
2 > 0. Now since we consider all possible encodings, we must think about mapping the

2N(H(X)−δ) distinct available binary sequences to a set of messages. The leftover messages then must induce
coding errors. The number of correctly coded messages is definitely less than 2N(H(X)−δ) messages, from
either the likely or unlikely sets. Using the bound

P{α} ≤ 2−N(H(X)−δ′)

for the probability of a likely message α ∈ A, the probability P that a message is coded correctly satisfies

P < ε′ + 2N(H(X)−δ)2−N(H(X)−δ′) = ε
2 + 2−Nδ/2.

This can be shown to be less than ε for a large enough N , completing the proof of (ii). �

An alternate formulation of Theorem 1 exists when we focus on prefix codes. These codes require that
there is no whole code word in the system that is a prefix of any other code word in the system; they are
thus decodable uniquely in one pass, earning them the name of instantaneous codes. In this setting, where a
random variable X is mapped via a prefix code to a binary string, Shannon showed that the expected length
L of an optimal encoding of X satisfies [8]

H(X) ≤ L ≤ H(X) + 1. ()

This can be proven straightforwardly using Kraft’s inequality and the non-negativity of relative entropy [8].

2.3. Landauer’s Principle

In the previous section, we have talked about information rather theoretically, as a mathematical theory.
However, any information is encoded and transmitted via physical devices and processes. For example, in a
very simple model, one bit of information could be encoded in a spin-1/2 particle which is either in the ↑
or the ↓ state. It could also be encoded by a one-molecule gas in a box with a middle partition, where the
molecule is either on the left or on the right. Thus, since the properties of basic components of information
theory are controlled by physical laws, we would expect different information processing capacities when we
consider the classical and quantum settings.

In 1961, Rolf Landauer proposed a principle fundamentally linking information theory to thermodynam-
ics [13]. In essence, he posited that in order to do logically irreversible operations on a system, a minimum
amount of energy must be expended per bit of information. This is in contrast to reversible operations,
which can be performed without wasting any energy (in a quasistatic limit) [20]. It can be stated as follows.

The erasure of one classical bit of information results in the generation of kT ln 2 joules of heat
released to the environment, where k is Boltzmann’s constant and T is the temperature of the
environment heat sink.
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Figure 1. Szilard’s engine (sourced [16]).

This erasure principle is widely accepted as a physical law, and was used by Charles Bennett to resolve
the paradox of Maxwell’s demon [1, 2, 3]. This paradox is a classical thought experiment designed by James
C. Maxwell to violate the second law of thermodynamics [14]. In 1929, Leo Szilard proposed the Szilard
engine, a refinement which shows thermodynamic consequences of having information about a system [22].
A diagram is shown in Figure 1.

In this model, the demon observes a box containing one molecule and extracts work by operating a piston
attached to a load. A cycle proceeds as follows: first, the molecule is free to move in the box, and then a
partition is added, splitting the box into two halves. The demon measures which side of the box the particle
is in, records the result, then adds to the empty side a piston coupled to a load. Finally, the one-molecule
gas is put in contact with a heat reservoir at temperature T and expands isothermally to fill the whole
volume, doing work on the load. Specifically, recalling that the work done by the gas is W = T∆S, where
∆S = Nk ln(Vf/Vi) is the change in entropy of an N -particle ideal gas expanding from volume Vi to Vf , an
amount

W = T∆S = kT ln 2 ()

of work is exerted on the load. The device is then back in its initial state! The paradox and violation of
the second law of thermodynamics lie in the fact that this seems to be a cycle that completely converts heat
into work, which is equivalent to decreasing the total entropy of this isolated system.

Before Bennett’s treatment of the paradox, it was generally thought that the demon’s measurement
of the positions of the molecule must have required some work. Surprisingly, Bennett showed that some
measurements actually can be made without energy expenditure [1]. However, he pointed out that, as
written above, the process is not a complete cycle! The demon must be considered a part of the system.
While the box is returned to its initial state, the demon is not – it has one bit of knowledge recorded, which
it did not have at the start of the process. Thus, to return the demon’s mind to its initial state, that bit
of knowledge must be erased. By Landauer’s principle, this erasure costs at least kT ln 2 joules of energy,
exactly counterbalancing the amount of work extracted from the gas expansion. Thus, as soon as we consider
the information in the demon’s mind as physical state, the second law of thermodynamics is saved: in the
combined system of the box and the demon, no net work is done.

3. Information Encoded in Quantum Systems

We have discussed the idea that information should be viewed through a physical lens. It is therefore natural
to examine how the differences between quantum and classical physics will affect both information theory
and thermodynamics.

3.1. Important Notions of Quantum Mechanics

A few important notions from quantum mechanics will be relevant to our discussions. This section contains
a brief summary of the definitions of pure, mixed, separable and entangled states, as well as some illustrative
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examples [18]. A familiar reader may skim through them to pay more attention to section 3.2, where we
introduce the quantum analog of Shannon entropy and its computational interpretation.

Consider two qubits A and B. The joint state of the two atoms belongs to a four-dimensional Hilbert
space H = HA ⊗HB , where HA and HB are two-dimensional Hilbert spaces for A and B respectively.

We begin with pure states, which are states for which we have complete knowledge of the preparation
procedure. They can be represented in Dirac’s ket notation as four-dimensional vectors |ψAB〉 ∈ H.

In contrast, some states result from a preparation procedure for which we have some classical uncertainty.
For example, we could be producing states in a pure state |ψ〉 for p1 of the time, and states in another
pure state |φ〉 for p2 = 1 − p1 of the time. Such states cannot be simply represented as four-dimensional
vectors. Instead, we represent them as matrices belonging to the space HM of 4 × 4 Hermitian matrices
with positive eigenvalues and normalized such that Tr ρ = 1. HM is a subspace of the Hilbert-Schmidt
space HS = H ⊗H∗ of bounded linear operators on H, where H∗ is the dual space of H. We call this the
density matrix formalism. We give a motivation for this formalism by considering the expected value of some
operator A. In our example above, we should add the classical uncertainty on top of the regular expected
values of A over the states |φ〉 and |ψ〉. We should therefore have

〈A〉 = p1 〈ψ|A|ψ〉+ p2 〈φ|A|φ〉 . ()

Adding to this expression the resolution of the identity I =
∑
n |n〉〈n|, where {|n〉} is a complete set of

basis states (here, it can for example be {|00〉 , |01〉 , |10〉 , |11〉}), we can rewrite () and simplify to

〈A〉 =
∑
n

〈n|A(p1 |ψ〉〈ψ|+ p2 |φ〉〈φ|)|n〉

= Tr ρA.

We denoted the quantity in parentheses the density matrix

ρ = p1 |ψ〉〈ψ|+ p2 |φ〉〈φ| ()

and noted that the trace of a matrix B can be written
∑
n 〈n|B|n〉. The density matrix ρ captures all the

information that we have about the state, both quantum and classical. Note that a state is pure if and
only if its density matrix satisfies ρ = ρ2, thus Tr ρ2 = 1. Pure states can all be decomposed into a form
ρ = |ψ〉〈ψ| for some ket |ψ〉 ∈ H; this is illustrated in Table 1.

We can characterize composite systems - joint states of several particles - according to another important
(and independent) axis. Going back to pure states to describe this phenomenon, suppose A is in state
|1〉A and B in state |0〉B . We can write the joint state as the tensor product |10〉 = ( 0

1 ) ⊗ ( 1
0 ). The set

of such states |00〉 , |01〉 , |10〉 and |11〉 forms the canonical basis of H; any general state can be written a
superposition of these four states. Note however that not all states in H can be factorized into a tensor
product as we have done for |10〉! For example, we cannot separate the description of particle A from that of
B when they are in the joint state 1√

2
(|01〉+ |10〉) (see ρ3 in Table 1). We denote product, or separable states

all joint states that can be factored into tensor products of a state in HA and a state in HB , and denote
entangled states those that are not separable. These entangled particles cannot be described separately: a
measurement of one particle will affect the whole system, leading to many of the counter-intuitive predictions
quantum mechanics is famous for.

Finally, suppose we know that particles A and B are in a joint pure state ρ = |ψ〉〈ψ|, but we only have
access to particle A. The state of our particle A can then be described by the reduced density matrix on
subsystem A

ρA :=
∑
i

〈i|B (|ψ〉〈ψ|) |i〉B = TrB ρ, ()

the partial trace of ρ over the basis {|i〉B} of HB .
We can now characterize the entanglement of a composite system simply from the reduced density matrix

on one of its subsystems. Joint separable states must be written in a |ψ〉〈ψ|A ⊗ |φ〉〈φ|B form and thus have
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Pure Mixed

Separable

ρ1 =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


= |0〉〈0| ⊗ |1〉〈1|
= |01〉〈01|

ρ2 =
1

2


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


= 1

2

(
|0〉〈0| ⊗ |1〉〈1|

+ |1〉〈1| ⊗ |0〉〈0|
)

Entangled

ρ3 =
1

2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0


= 1√

2

(
|01〉+ |10〉

)
1√
2

(
〈01|+ 〈10|

)
ρ4 =

1

4


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1


= 1

2
1√
2

(
|00〉+ |11〉

)
1√
2

(
〈00|+ 〈11|

)
+ 1

2ρ3

Table 1. Illustration of the pure-mixed and separable-entangled axes, with examples of the
various types of states. The pure-mixed axis is determined by whether a density matrix can be
written as ρ = |ψ〉〈ψ| for some column vector |ψ〉 ∈ H; while the separable-entangled axis is
determined by whether ρ can be written as a sum of tensor products of the density matrices for
the individual particles.

reduced density matrix (on A) |ψ〉〈ψ|A, a pure state in the smaller space of 2×2 density matrices for particle
A. Conversely then, a joint pure state is entangled if and only if its reduced state over a subsystem is mixed.
For example, the entangled state |ψ〉 = 1√

2
(|0〉A |1〉B − |1〉A |0〉B) has reduced density matrix on A

ρA = 1
2 (|0〉〈0|A + |1〉〈1|A), ()

a mixed state on HA. So knowing the reduced state of one of the particles in a joint system gives us
information about the entanglement of the system as a whole.

3.2. Quantum Entropy and Qubit Encoding

In the preceding subsection, we’ve examined mixed states arising from two situations: from an experiment
with some classical uncertainty, or when we can only observe a subsystem of an entangled state. Such a
system is in one of a set of pure states {|ψi〉} with classical probabilities {pi}, similarly to a classical system
that can be in a set of states with given probabilities. A measure of uncertainty analogous to the entropy
() in the classical setting can be defined here [18].

We let the von Neumann entropy of a system with density matrix ρ be

S(ρ) = −Tr{ρ log ρ}, ()

which can be simplified by writing ρ in its eigenbasis {|i〉} as ρ =
∑
i ai |i〉〈i|:

S(ρ) = −
∑
i

ai log ai, ()

a formula that very closely resembles () and (). Note that considering a different basis is perfectly
reasonable, as S(ρ) is invariant under unitary transformations of ρ. This must be the case, as physically
relevant properties of the system are basis independent.

Let’s quickly examine the two limiting cases. For a pure state, ρP = ρ2
P and thus the entropy S(ρP )

vanishes, as we expect. On the other hand, consider the maximally mixed state ρM =
∑
i

1
N |i〉〈i| where
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{|i〉} is an orthogonal basis of size N . This state corresponds to the outcome of an experiment generating
N possible pure states with equal probability, and has maximal entropy S(ρM ) = logN .

A final interesting property can be observed when we examine the entropy of an entangled state |ψ〉〈ψ|AB .
Recall from the discussion at the end of the previous section that the entanglement of a joint system manifests
itself in the individual particles having mixed reduced density matrices. These reduced states will then have
non-zero entropy. Indeed, returning to the example in (), the entropy of the entangled (pure) state itself
is zero, but its reduced density matrix over A is maximally mixed and has maximal entropy, signaling the
existence of entanglement:

S(ρA) = −Tr{ρA log ρA} = log 2.

Thus, in general, a joint system of N particles can be partitioned into two subsystems A and B containing
respectively NA and NB = N−NA particles. A notion of bipartite entanglement entropy can then be defined
to quantify how entangled the system is. For a joint pure state ρAB = |ψ〉〈ψ|AB , it is given by

S(ρA) = S(ρB), ()

where as usual ρA and ρB are the reduced density matrices over particles A and B. The equality of the
entropy of the two subsystems is shown in Appendix A.

Before talking about information erasure in this quantum setting in section 3.4, let us first present
Schumacher’s quantum analog of Theorem 1. This quantum coding theorem allows us to interpret the
quantum entropy of some system as the amount of quantum resources required to represent the information
about a system. Just as was the case with Shannon’s theorem, this operational understanding provides an
justification for the definition of the entropy.

Consider a quantum message source M which represents each message i from a message source A as a
pure “signal” state |ψi〉M , occurring with probability pi. The state of a message thus has density matrix

ρ =
∑
i

pi |ψi〉〈ψi|M ,

and we can denote the density matrix of each signal state by ρi = |ψi〉〈ψi|M .
The Shannon entropy of the classical message source A is only equal to the von Neumann entropy of ρ

if the signal states are all orthogonal! In other cases,

S(ρ) < H(A) = −
∑
i

pi log pi.

There is a discrepancy between the amount of classical information used to create the mixed state ρ, and
the accessible information left in ρ.

Rather than relate S(ρ) back to classical information of the message preparation as above, Schumacher
interpreted the term in a fundamentally quantum way, in terms of the number of qubits required to encode
a large group of N signals from M with high fidelity [19]. A qubit is simply a spin-1/2 system, the quantum
analog of a bit.

Theorem 2 (Quantum Noiseless Encoding Theorem). Let M be a quantum signal source with signal
ensemble described by the density matrix ρ, and let δ, ε > 0.

i) If S(ρ) + δ qubits are available per signal, then for sufficiently large N , a group of N signals can be
encoded in the available qubits with fidelity greater than 1− ε.

ii) If S(ρ) − δ qubits are available per signal, then for sufficiently large N , if a group of N signals is
encoded in the available qubits, the fidelity will be less than ε.

This looks incredibly similar to Theorem 1! Before moving on to the proof, the notions of a group of
signals and fidelity must be clarified in the quantum context. We must also elaborate on the notion of a
limited quantum channel.
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Let’s first quickly formalize the notion of a group of N signals, as it can be done quite straightforwardly.
Consider an extended quantum source MN consisting of N i.i.d. copies of M . It has signal ensemble

ρN := ρ1 ⊗ · · · ⊗ ρN , ()

where each ρi is i.i.d. distributed as ρ. The eigenstates of ρN will be product states |n1, · · · , nN 〉, where |ni〉,
n = 1, . . . ,dim(HM ) are the eigenstates of the ρi.

Now on to channels. Let X denote the quantum channel, to which we must transfer the signal from
the source system M . Note that in the quantum setting, copying and transposing a state are two different
notions. Copying a pure state has the joint system of M and X evolving as

|ψi〉M |0〉X → |ψi〉M |ψ〉X ,

where |0〉 is a fixed “null” state. The no-cloning theorem, as shown by Wooters and Zureck [25] among
others, states that some signal states cannot be copied.

We therefore cannot copy the signal state from M into the quantum channel X, and must instead use
transposition to move the state into X. Unlike during cloning, transposition erases the signal from M :

|ψi〉M |0〉X → |0〉M |ψi〉X .

It is a unitary operation U provided that the inner products between signal states are preserved in
the coded states in the quantum channel. This is a perfect transposition and imposes the condition that
dim(HX) ≥ dim(HM ) (supposing w.l.o.g. that the signal states span HM ). The channel encoding and
decoding can thus be represented as

M
U−→ X

U−1

−−−→M ′

where M ′ is a copy of the message space M and U−1 represents a perfect decoding.
We instead want to consider approximate transpositions, where the dimension of the quantum channel

may be less than that of the message space. For such a transposition, let X be composed of a channel
subsystem C, and an extra system E which is discarded. The approximate transposition from M to M ′

through the limited channel C can be represented

M
U−→ C + E −→ C −→ C + E′

U ′−→M ′

where U ′ is some decoding and E′ is a copy of the extra system E in a fixed state (such as |0〉〈0|E′).
Now that we have an adequate formulation of a quantum channel where information is potentially lost,

we want a measure of how close an output signal1 ωi is to its input signal ρi = |ψi〉〈ψi|. This can be quantified
by a “validation measurement” which indicates whether wi and ρi match. It will succeed (return a match)
with probability Trwiρi. The fidelity F for a general signal ensemble ρ can thus be written as

F :=
∑
i

pi Trwiρi, ()

where wi can be derived from the diagram above in terms of the unitary operations U and U ′, a partial trace
over E and the fixed state (e.g. |0〉〈0|E′) added right before decoding.

From this definition, we expect that if the channel C is too small, the fidelity should be near zero.
Conversely, if C is large enough, we should be able to make the fidelity approach 1. Schumacher formalizes
these two intuitions in two lemmas that are then used in the main proof.

Lemma 3. Let the dimension of the limited channel be d = dim(HC). Suppose that the signal state ρ
satisfies that for any projection Γ onto a d-dimensional subspace of HM ,

Tr ρΓ < η ()

for a fixed η. Then the fidelity is bounded above as F < η.

1Note that since we have discarded a subsystem of X, the output signal ωi may no longer be a pure state.
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This result follows relatively simply by noting that each wi in () is supported on a d-dimensional
subspace of HM ; therefore, its eigenvalues are projectors satisfying (). In addition, it can be shown that
no generality in Lemma 3 is lost if we suppose that Γ is a projection onto a subspace of HM spanned by
d eigenstates of ρ. Indeed, Tr ρΓ < η if and only if the sum of any d eigenvalues of ρ is less than η. The
proof of the next lemma uses this remark. It asserts the existence of a scheme with fidelity close to 1 given
a sufficiently large channel.

Lemma 4. Let the dimension of the channel be d = dim(HC). Suppose there exists a projection Γ onto a
d-dimensional subspace of HM such that

Tr ρΓ > 1− η ()

for a fixed η. Then there exists a transposition scheme with fidelity F > 1− η.

The proof is by explicitly constructing a transposition scheme.
Armed with these lemmas, the quantum noiseless coding theorem can be proved!

Proof sketch of Theorem 2. We first note that the von Neumann entropy of ρ is equal to the Shannon entropy
of the distribution of eigenvalues Pn of ρ, n = 1, . . . ,dim(HM ). Similarly, the signal ensemble ρN has
eigenvectors equal to the product states |n1, . . . , nN 〉 of eigenvectors of ρ, and the corresponding eigenvalues
are also products

Pn1,...,nN
= Pn1

· · ·PnN
.

Thus, when only considering eigenvalues, this quantum signal is analogous to a classical message of length N
that has alphabet {1, . . . ,dimHM )} and probability distribution Pn, with Shannon entropy equal to S(ρ).
From the proof of Theorem 1, we can consider two orthogonal “likely” and “unlikely” subspaces of HMN .
The “likely” subspace Λ is spanned by the eigenvectors whose classical analog belong to the set A in ().

Thus, for the positive bound (i), just as in Shannon’s original theorem, we can faithfully transpose the
signals in the likely set Λ to the available qubit sequences. Indeed, from the classical (), we can pick N
large enough such that the probability of unlikely eigenvectors is made less than ε/2 while Λ has less than
2N(S(ρ)+δ) eigenvectors. Then any projection Γ into a d-dimensional subspace of Λ satisfies (), and the
result follows from Lemma 4.

Similarly, the impossibility bound (ii) also follows from the classical analog which tells us that for large
enough N , no sum of the 2N(S(ρ)−δ) eigenvectors will have sum greater than ε. Applying Lemma 3 then
yields the result.

There is no more need to worry about the technicalities of the new definition of fidelity – they were dealt
with in the two lemmas! �

This theorem is a perfect analog of Shannon’s noiseless encoding theorem in the setting of a quantum
channel! It provides an interpretation for the von Neumann entropy, and implies that we can naturally
measure quantum information in number of qubits.

3.3. Conditional Quantum Entropy and Transferring Partial Information

We have discussed computational interpretations of the Shannon entropy S(ρ) of a state ρ. Another related
quantity that also has a very interesting computational meaning is the conditional entropy.

Recall the conditional Shannon entropy H(X|Y ) defined in () which satisfied the chain rule (). It can
be understood as the amount of classical information that one would need to learn the state of X when
knowing some background information Y (which is potentially correlated with X).

In a quantum setting, the above scenario can be represented by a two-party game as well: Alice and
Bob each have a state in some unknown joint quantum state ρAB , and respectively have reduced density
operators ρA and ρB . The analogous question is then how much additional quantum information Alice needs
to send Bob such that Bob has the full ρAB . Horodecki et al. investigate the minimum amount of quantum
communication to do this, in units of qubits, when allowing unlimited classical communication [11]. They
find that this is exactly the quantum conditional entropy

S(A|B) := S(AB)− S(B), ()
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where S(AB) and S(B) are the von Neumann entropies of ρAB and ρB respectively.
The curious thing about this conditional quantum entropy is that unlike in the classical setting, S(A|B)

can be negative! Already Schrödinger had noted that entangled states can possess a strange feature where
we can know more about a whole system than about subsystems. For example, consider again the example
we used in sections 3.1 and 3.2, the entangled state |ψ〉 = 1√

2
(|0〉A |1〉B − |1〉A |0〉B). Its reduced density

matrix on subsystem A () is maximally mixed , leading to a negative conditional entropy

S(B|A) = S(AB)− S(A) = − log 2.

Indeed, Cerf and Adami showed that the conditional entropy is non-negative for separable states [6]. Con-
versely, negative conditional von Neumann entropy S(A|B) implies entanglement of the bipartite joint sys-
tem [6, 7]!

The operational understanding of conditional entropy presented by Horodecki et al. also gives an inter-
pretation of negative conditional entropy. In this two-party game, if the conditional entropy is negative,
rather than needing to communicate a number of bits, Alice and Bob can actually gain −S(A|B) maximally
entangled states, which can be used for future communication.

Instead of elaborating more on this operational meaning of conditional entropy, we will move to its ther-
modynamic interpretation. We will find that negative conditional entropy also has an effect on Landauer’s
principle, and through it, on physical quantities such as work.

3.4. Erasure of a Quantum System

We have discussed the operational interpretations of both the von Neumann entropy and the conditional
entropy – noting the curious fact that in the quantum world, conditional entropy can be negative. In the
following section, we will move to discuss Landauer’s principle in a fully quantum setting. However, before
doing so, we must answer the question of how to perform erasure of classical information encoded in a
quantum state.

For a classical state represented by a molecule in a box with a partition, we could erase the information
in the system by using a piston to push the molecule to the left half of the box, irrespective of where it
started. When carried out reversibly and isothermally, this procedure generates kT ln 2 of heat, by the same
analysis as done to obtain ().

For a quantum system, we define erasure of a system as setting it to a predetermined state, e.g. the pure
state |0〉. Consider a system in a mixed state ρ =

∑
i pi |ei〉〈ei|, where |ei〉 are the eigenvectors of ρ.

One method of erasure could be to measure the system in the eigenbasis; this measurement gives outcome
i with probability pi. The system will then collapse to an eigenstate |ei〉, which we can rotate unitarily to a
fixed standard state |e0〉. We must then erase the classical record of the measurement outcome, expending
kT ln 2 per bit according to Landauer’s principle. In total, an amount

kT ln 2H({pi}) = kT ln 2S(ρ) ()

of heat is generated. If we had measured in any other basis, the Shannon entropy of the classical record
would have been larger than S(ρ). The right hand side of () is therefore a lower bound for the energy
required for erasure using this procedure, in accordance with Landauer’s principle.

A more elegant erasure procedure is by thermal randomization, introduced by Elihu Lubkin [15, 17].
With this method, the quantum system simply needs to be put into contact with a heat bath at temperature
T . When thermal equilibrium is reached, the system will be in a state

ω =
e−βH

Z
=

1

Z

∑
i

e−βEi |ei〉〈ei| , ()

where β−1 = kT , H is the Hamiltonian of the system with eigenstates |ei〉 and eigenvalues Ei, and Z is the
partition function Z = Tr{e−βH}. From (), we can note that the probability p(|ei〉) that w is in the a

11



pure state |ei〉 is exponentially decreasing as the energy Ei increases: the probability follows a Boltzmann
distribution

p(|ei〉) =
e−βEi

Z
. ()

Thus, we can make w arbitrarily close to the fixed pure ground state |e0〉 by letting the system have an
energy spectrum with a large level spacing: E1 � E0. This was exactly the goal of the erasure process!

We can compute the net amount of entropy generated by this thermal randomization erasure process, by
separately finding the change in entropy of both the heat bath and the system [15]. It is found to be

∆Snet = −kTr{ρ logω}
≥ kS(ρ),

()

confirming Landauer’s principle. We can notice that the erasure uses the least amount of energy when the
equilibrium state of the bath ω is the same as the system ρ that we are trying to erase.

Qubits are a two-level system where we can w.l.o.g. take the ground state energy of |0〉 to be 0 and the
excited energy of |1〉 to be E1. In this setting, the thermal randomization procedure then consists in coupling
our system to a heat bath at temperature T , and then slowly raising the energy of |1〉. In this case we can
derive () more explicitly. Indeed, the probability p(|1〉) that the excited state is occupied is

p(|1〉) =
e−βE1

1 + e−βE1
.

Then, the first law of thermodynamics gives us that the total work done on the system W is equal to the
energy cost ∆E. Altering the energy of a state |ψ〉 from E0 to E0 + dE has an average energy cost of
p(|ψ〉)dE, where p(|ψ〉) is the probability that the system is in that state. Then, when the excited energy
E1 tends to infinity, we have in the quasistatic limit,

W = ∆E =

∫ ∞
0

p(|1〉)dE

= kT ln 2,

()

exactly in accordance with Landauer’s principle!
This erasure procedure will be a key part of the paper by del Rio et al. that we will discuss in the following

section [9]. Their work considers Landauer’s principle where the observer has a quantum memory, giving a
thermodynamic meaning to negative entropy.

4. Landauer's Principle and Negative Quantum Entropy

In their paper “The thermodynamic meaning of negative entropy”, del Rio et al. investigate what happens
to Landauer’s principle if the observer uses a quantum rather than a classical memory. That is, if rather
than using classical bits to store their information about the system, the observer were to use a set of qubits
entangled with the system as memory.

Unlike in a classical setting, in the case of a quantum system, different observers may have different
knowledge about the system. So in fact, Landauer’s principle should be rewritten in terms of the minimum
cost of erasure of a system X for an observer O denoted W (X|O): the amount of work that O needs to do
erase X. For an observer with a classical memory, we can denote the observer by OC . Landauer’s principle
can thus be written as

W (X|OC) = S(X|OC)kT ln 2, ()

where S(·) denotes the von Neumann entropy2, k is Boltzmann’s constant and T the temperature of the
environment as before. To tie this into the classical thermodynamics view of the entropy as a property of

2The authors actually note that most of the statements are valid for any reasonable entropy definition. In the proofs, they
use smooth min- and max- entropies, which reduce to the von Neumann entropy for suitable distributions.
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the system, we can consider a standard observer who only has access to some macroscopic parameters such
as the energy of the system and is maximally ignorant otherwise.

The authors del Rio et al. consider the fully quantum setting in which both the system and the memory
consist of qubits. Now there is a slight caveat in that accessing the memory O could change its contents –
this would be a problem if we changed parts of the memory containing information about other systems,
since it could cause problems for computation. Thus, the authors proceed as in most quantum information
theory papers and impose a condition on the erasure process where the information about other systems
is preserved. Letting the system of interest be X and the other systems mentioned in the memory be a
reference system R, this amounts to requiring that the joint system ρOR be preserved.

To begin the discussion, del Rio et al. consider an n-qubit system X. They introduce three agents, Alice,
Bob and Quasimodo, the first two having classical memories and the third having a quantum memory Q
maximally entangled with the system X. Suppose that Alice prepares the system in some pure state (her
classical memory A must therefore be large enough to store a full description). Then, all three observers
have different conditional entropies:

i) Alice knows the state of the system, thus has S(X|A) = 0;

ii) Bob considers each of the 2n pure states equally likely, and thus has maximal entropy S(X|B) = n;

iii) Quasimodo has S(X|Q) = S(XQ)−S(Q), where ρXQ is pure and ρQ is fully mixed. Then S(XQ) = 0
and S(Q) = n, and the entropy is negative: S(X|Q) = −n.

The work cost for each of these observers to erase their system – as we defined previously, to take each
particle to a fixed state – will be different. Let us consider an n = 1 qubit system for simplicity.

i) Alice knows the state, and can simply apply a unitary operation to rotate it to |0〉, a reversible operation
which can be done at no cost:

W (X|A) = 0.

ii) Bob has no information about the state, and considers it the fully mixed state ρ = 1
2 (|0〉〈0| + |1〉〈1|).

He can apply a thermal randomization erasure procedure as described in section 3.4 to end up with
|0〉, The total cost of this operation was derived in() to be

W (X|B) = kT ln 2.

iii) Quasimodo can be modelled as having a two-qubit memory Q = Q1⊗Q2. The first qubit is maximally
entangled with the system X, in a state |Q1X〉 and the second is maximally entangled with the reference
system R, in a state |Q2R〉. Quasimodo must preserve the reduced state

ρQR = TrX(ρQXR) = 1
21Q1

⊗ |Q2R〉〈Q2R| , ()

where 1Q1
is the identity matrix of the dimension of Q1: 1Q1

= |0〉〈0|+ |1〉〈1|. Quasimodo will actually
be able to extract work from this system. We describe the scheme below.

We can notice that Quasimodo’s situation is essentially opposite to Bob’s: the two-qubit joint system
|Q1X〉 is pure rather than fully mixed. So the strategy for extracting work is to run Bob’s thermal random-
ization erasure process but backwards.

Procedure 1 (Work extraction). For an `-qubit system in a pure state, del Rio et al. define the following
procedure that extracts exactly `kT ln 2 work.

a) initially, the pure state is at some energy E0, and only one energy level is occupied. We denote this
state as |ψ0〉, and let the system have a basis {|ψi〉}, i = 0, 1, . . . , 2` − 1. The energy of the other
(unoccupied) levels i = 1, . . . , 2` − 1 can be raised to a high value E1 at no cost.
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b) Then, the system is coupled to a heat bath and the energy of the empty states is slowly decreased. Just
as during the thermal randomization erasure, the energy levels are populated according to a Boltzmann
distribution, and the probability that the system is in any of the excited states is given by

p(|ψ1〉) =
e−βE1

(2` − 1)e−βE1 + e−βE0
,

where β−1 = kT . The total probability that the system is in an excited state is then (2`−1) times this
value. Lowering their energy E1 down to zero results in an energy gain equal that can be computed
just as in (). In the quasistatic limit as E1 →∞, an amount∫ ∞

0

1

1 + eβ(E1−E0)/(2` − 1)
=

ln
(
2`
)

β
= `kT ln 2

of energy is gained, which can be stored in a battery.

c) The final state of the `-qubit system is fully mixed, just like the starting state of Bob’s erasure process.
Indeed, notice that the thermal randomization procedure that Bob uses is simply this work extraction
process run backwards).

When Quasimodo applies this work extraction procedure to his two-qubit pure state |Q1X〉, he gains
2kT ln 2 of work, and ends up with a fully mixed separable state ρQ1X = 1

41Q1X . This implies that both
the reduced states of his memory ρQ1

and of the system ρX are fully mixed. The fact that ρQ1
= 1

21Q1
is

indeed necessary for the joint state of the memory and the reference () to be preserved, as we required.
Finally, the fully mixed ρQ1

can be erased using Bob’s procedure at a cost of kT ln 2. The total work cost of
Quasimodo’s erasure is then negative:

W (X|Q) = −kT ln 2,

a work gain! The final state of the full system is

ρQXR = |0〉〈0|X ⊗
1
21Q1

⊗ |Q2R〉〈Q2R| ,

and all entanglement is lost.

In their work “The Thermodynamic Meaning of Negative Entropy”, del Rio et al. extend this example
to settings where the memory is not fully entangled with the system – work can be extracted from whatever
entanglement there is. Their main theorem is proven in the setting of a single erasure (single-shot). The
statement is probabilistic, since in general, the work required to erase a system is a random variable.

Theorem 5 (Main result). There exists a process to erase a system X conditioned on a memory O and
acting at temperature T , whose work cost satisfies

W (X|O) ≤ [Hε
max(X|O) + ∆]kT ln 2 ()

except with probability less than δ =
√

2−∆/2 + 12ε for all δ, ε > 0.

The quantity Hε
max(·) denotes the ε-smooth max-entropy, a single-shot generalization of the von Neumann

entropy defined as
Hε

max(X|O) := inf
ρ′XO

sup
σO

log2 F (ρ′XO,11X⊗σO
),

where F denotes the fidelity, the supremum ranges over all density matrices ρO on O, and the infimum is
taken over all density matrices ρ′XO that are ε-close to ρXO in the purified distance. This notion can be
operationally understood as the maximum fidelity of ρXO with a product state that is completely mixed on
X [12]. It is often used in information theory, where it and some dual definitions are used to characterize
information processing tasks. It satisfies several important properties, like the limits for pure and fully mixed
states as ε→ 0. The technical details of this definition will not be elaborated on here. We simply note that
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in the thermodynamic limit, where we increase the size of the system to “average away” fluctuations, this
ε-smooth max entropy converges to the von Neumann entropy S(·). Indeed, we can define the work cost rate
w of an erasure process as

w(X|O) = lim
N→∞

1
NW (X⊗N |O⊗N ), ()

the average work cost of the process in the limit where we take N i.i.d. copies of the system X and the
memory O. Using a similar limiting argument as () in the proof of Shannon’s noiseless encoding theorem,
it can be shown that this entropy converges to the von Neumann entropy [9]. We then have:

Corollary 6 (Thermodynamic limit of main result). There exists a process to erase a system X conditioned
on a memory O and acting at temperature T , whose work cost rate satisfies

w(X|O) ≤ S(X|O)kT ln 2. ()

Theorem 5 implies that if we have a quantum memory entangled with X, i.e., with conditional entropy
S(X|O) < 0, we can erase the system with negative work cost, actually gaining work by doing so! This
works even if the memory qubits are not maximally entangled with the system like Quasimodo’s were in our
simple example.

Another corollary of the theorem is thus that, for the same n-qubit system, an amount greater or equal
to

[n−Hε
max(X|O)−∆]kT ln 2 ()

of work can be extracted via some process (of course, except with probability less than δ =
√

2−∆/2 + 12ε
for all δ, ε > 0).

We will now present a proof sketch of the main theorem. In addition to building intuition, the example
that we presented with Alice, Bob and Quasimodo already gave us a few important tools such as Procedure 1.

Proof sketch of Theorem 5. The result is proven by giving an explicit process satisfying the bound (). X
is assumed to be an n-qubit system. The erasure parallels Quasimodo’s erasure procedure illustrated earlier,
but here there are more details to deal with since we do not know how the memory is entangled with the
system. It proceeds in three main steps:

i) The system X is manipulated to compress the correlations between the memory and X into a pure state
of a subsystem of X⊗O that resembles Quasimodo’s starting state. The subsystem has approximately
n − Hε

max(X|O) qubits, and the joint pure state is maximally entangled between two subsystems of
X ⊗O.

ii) Using that joint pure state, we can extract roughly [n − Hε
max(X|O)]kT ln 2 of work and leaving the

state now fully mixed. Note that work extraction can end at this step, explaining the extra nkT ln 2 of
work in () relative to the bound in ().

iii) Finally, we erase the now separable system X, performing work nkT ln 2.

Out of these three steps, we already know how to deal with (ii) and (iii). The work extraction from a joint
pure state can be done using the work extraction procedure 1, with number of qubits ` = n−Hε

max(X|O),
completing (ii). The erasure has also been described previously as the thermal randomization procedure,
which is simply Procedure 1 run backwards.

Before proceeding to (i), we first define a purifying system Γ, such that the joint state ρXOΓ is pure (recall
how mixed states arise as subsystems of larger entangled systems as discussed at the end of section 3.1).

For the information compression step (i), del Rio et al. prove that it is possible to create via a local
unitary transformation on X an `-qubit state of a subsystem of X ⊗O with

` ≥ n−Hε
max(X|O) + 2 log

(
δ2 − 12ε

)
,

that is δ-close to a pure state. The distance between states ρ, σ is measured by the trace distance 1
2‖ρ−σ‖1.

Their proof proceeds in two steps, using two lemmas which we will state and justify below.
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a) First, a subsystem X1 ⊆ X of `/2 qubits can be (up to a probability determined by δ) decoupled from
Γ, in a fully mixed state.

A notion of a system A being δ′-decoupled from another system B is introduced. This occurs
if their joint state ρAB is δ′-close to a product state 1A

|A| ⊗ ρB . This statement is then proven

using decoupling results by F. Dupuis and others [10], who give a bound on the average over
all unitary operators on the system X of the distance between the desired product state and
a state obtained after applying that unitary.

b) Then, since the global state is pure, we must be able to find a subsystem P of X ⊗ O of the same
dimension `/2 that purifies the state of X1. The joint pure state X1⊗P has ` qubits and is

√
2δ-close

to a fully entangled state.

Supposing that X1 and Γ are fully decoupled, this is quite straightforward, as we can find
systems A1 and A2 that purify ρX1

and ρΓ. Then A1 ⊗A2 purifies ρX1
⊗ ρΓ. The claim for

δ > 0 then follows from Uhlmann’s theorem [23] regarding the fidelity between two states,
and some computations.

This completes the proof! Essentially, the correlations between the system and the memory hinted at by the
negative conditional entropy S(X|O) were compressed into a fully entangled subsystem. We could extract
work from this entanglement via Procedure 1. The resulting fully mixed state of the system was then
thermally erased. �

Note that for an observer with a classical memory, the conditional entropy S(X|O) will never be negative,
so the amount of work required to erase a system is always greater or equal to zero. It can only be less than
Landauer’s classical limit if the observer has some classically encoded information about the system, like
Alice did in our earlier discussion. The classical formulation of Landauer’s principle implies “the work cost
of erasing an unknown bit”. It thus assumes a classical observer who does not have any prior knowledge
about the system, i.e., whose joint state ρXO is fully mixed.

It is important to note that all of the original entanglement is lost at the end of the work extraction
process. The process can therefore not be repeated, preventing Maxwell’s demon from being able to take
advantage of the scheme to produce a perpetual motion machine.

5. Conclusion

We started this work by introducing entropy in both the classical and quantum settings. We interpreted
the notion operationally as the amount of bits (or qubits) needed to encode a random variable with no
information loss. A connection between information theory and physics was then presented in the form of
Landauer’s principle, which postulates that information erasure implies heat generation. We then noted
that a key quantum effect, quantum entanglement, is linked to the possible negativity of conditional von
Neumann entropies. Conditional entropy was discussed first from an operational perspective, then in the
context of erasure of a quantum system. The paper by del Rio et al. showed an interesting “violation” of
Landauer’s principle if the observer has a quantum memory entangled with the system. In such a setting,
they found that work could actually be extracted through erasure!

Going forward, it would be valuable to further learn about the operational interpretations of other
quantum informational quantities, in the style of Schumacher’s work [19]. For example, the notion of channel
capacity arises when one considers the quantum analog of the noisy channel theorem.

On the side of ties between information theory and physics, many other insightful papers have been
written regarding these topics. In the paper by del Rio et al., information theoretical tools were used to obtain
a physical result. The opposite direction is also possible: thermodynamical statements can be translated
to information theory. For instance, Landauer’s principle can be applied to understanding Shannon’s noisy
channel theorem [17]. Vladko Vedral also used it in his paper “Landauer’s erasure, error correction and
entanglement” [24] to analyse both classical and quantum error correction from a thermodynamic point of
view.
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Finally, to gain further intuition about quantum negative entropy, we could investigate the paper by M.
Berta, M. Christandl, R. Colbeck, J. M. Renes and R. Renner, “The uncertainty principle in the presence
of quantum memory” [4]. The authors show a violation of Heisenberg’s uncertainty principle if quantum
information about a system is available, and note that this violation is also linked to the negativity of
conditional entropy.
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A. Proofs

Lemma 7 (Entanglement entropy). Partition a joint system of N particles can be partitioned into two
subsystems A and B containing respectively NA and NB = N − NA particles. For a joint pure state
ρAB = |ψ〉〈ψ|AB , the entropies of the two subsystems ρA and ρB are equal:

S(ρA) = S(ρB). ()

Proof. Note that the joint pure state |ψ〉AB belongs to the Hilbert space HAB = HA⊗HB . Suppose w.l.o.g.
that NA ≤ NB . Our result follows simply from its Schmidt decomposition:

|ψ〉AB =

NA∑
i=1

λi |ai〉A ⊗ |bi〉B ,

where λi are non-negative real numbers, and |ai〉A and |bi〉B are orthonormal states in A and B respectively.
Then, the partial traces over both subsystems A and B can be taken to obtain

ρA =

NA∑
i=1

λ2
i |ai〉〈ai|A

ρB =

NA∑
i=1

λ2
i |bi〉〈bi|B ,

which clearly have the same entropy. �
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